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ABSTRACT

The relationship between beam coupling losses in multiple beam antennas and
pattern parameters such as beamwidth and sidelobe level is investigated. A computer
algorithm to calculate the coupling coefficients for arbitrary number of beams is

implemented using MATLAB. Gain-loss data for various array amplitude distributions

is presented.
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I. INTRODUCTION

An important component of all communications, radar, and electronic warfare
systems utilizing the radio-frequency portion of the electromagnetic spectrum is the
antenna. The antenna is a transition structure that serves to minimize the signal loss
between a guiding structure and the transmission medium. It must efficiently radiate
power when transmitting and efficiently collect power when receiving, and is usually
called upon to give directional information as well. With so much reliance on the
electromagnetic spectrum for detection, targeting, and communications, it is imperative
that technical personnel understand the roles and design constraints of antennas.

There are three principal types of antenna systems in use:

1. Reflectors
2. Lenses
3. Arnays

Although multiple beams can be formed using any of these antennas, the analysis
presented here will concentrate on arrays. An array is simply a collection of small
antennas, generating a directional beam using constructive and destructive interference
[Ref. 1:p. 204]. Array antennas are widely used in radar, and
communications applications. Naval applications include the AN/SPY-1 radar for the

AEGIS system, the AN/AWG-9 F-14 radar, and the receive multiple beam antennas for




the AN/SLQ-32 electronic warfare system. Additionally, a conventional reflector
monopulse radar consists of a 4 feed horn assembly arranged in a planar array.

Arrays are particularly well suited to the radar role for the following reasons:

1. High data rates are possible with electronic beam scanning.
2. Multiple beams can be generated.

3. Lower sidelobe levels are possible for Low Probability of Intercept Radar
(LPIR).

4. Solid State technology can be efficiently utilized.

Before array technology, increasing directivity meant increasing the electrical size of the
antenna relative to the wavelength of the transmitted signal. The problem of increasing
the electrical size of an antenna was particularly exacerbated at lower frequencies. Arrays
were necessitated since it was not feasible to generate a single element with the required
dimensions. For example, at a frequency of 30 Megahertz (MHz), the corresponding
wavelength is 10 meters (= 30 ft). A two wavelength antenna would be 60 feet long.
Alternatively, the same directivity could be obtained using 2 or 3 quarter wavelength
antennas each 2.5 meters long as an array, with half-wavelength spacing. The efforts of
pioneers like Schelkunoff led to new advances in antenna design using array techniques
and polynomial methods.

In addition to electronically scanning the array with a single beam, it may be
advantageous to receive multiple beams simultaneously. Multiple beam antennas offer the

capability to scan sectors rapidly with little reduction in antenna gain. As mentioned,




many systems currently in use by the United States Navy take advantage of muitiple
beam antenna technology, including the AN/SPY-1 radar, the AN/SPS-48 radar, and the
AN/SLQ-32 Electronic Warfare suite.

The desire to optimize multiple beam systems has led to new synthesis techniques.
Advances in computing ability and efficiency have led to various methods for generating
multiple receive beams. These beam forming networks, with a matrix interpretation are
well suited for implementation wusing array elements as
feeds.[Ref. 2:p. 241] The advantages offered by phased array radar
systems (fast scanning, low sidelobes, ECCM capability) combine with the advantages
of multiple beam systems to further enhance overall system performance. Currently, most
modern systems that employ multiple beam antennas rely on some type of array to

implement the design.

A. MOTIVATION

High performance radar systems need narrow "agile" beams to accurately track
targets. Many simultaneous beams are desired to track multiple targets. The necessity for
high data rates common to most current weapons control systems makes electronic beam
scanning necessary (as opposed to mechanical beam scanning). Given that premise,
phased array antennas are the antennas of choice in most of these new systems.

Recent advances in Monolithic Microwave Integrated Circuits (MMIC) technology
have expanded the number of RF components available in a small package. Currently,

emphasis has been placed on integrating all of the RF devices necessary for a system (i.e.




phase shifters, radiating elements, low noise amplifiers, etc.) onto a single substrate.
These technological advances have produced compact arrays with a large number of

multiple beams.

B. PROBLEM STATEMENT

Intuitively, we would expect interaction between the various beams in a multiple
beam system. For example, if one of the beam ports is excited, some of the energy will
couple to the remaining beam ports and appear as a received signal. This coupled eaergy
results in a loss in gain that would not be present if the antenna only had a single beam,
and occurs even if there is perfect isolation between the beam feeds. This interaction has
been investigated by many researchers, most notably Seymour
Stein.[Ref. 3:p. 548] These beam coupling losses are an ifnportant
consideration in the design and analysis of multiple beam antennas. There is a tradeoff
between these losses and the beam crossover level. High crossover (i.e. closely spaced
beams) are particularly desirable from a systems perspective. However, the beam
coupling losses at these crossover levels may be excessive. In receive antennas, an
adequate signal-to-noise ratio is maintained using low noise amplifiers (LNA’s). The
location of the amplifiers in the antenna feed and their required gain are influenced by
the beamforming losses. Thus prediction of the beam coupling losses is essential as the
number of multiple beams, and the crossover level increases. Figure 1 shows the

radiation pattern for a typical multiple beam antenna array using a Taylor distribution
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with 25 dB sidelobes and n=5. In this figure, there are 3 beams and the beams

crossover at the 3 dB point.

C. APPROACH

Typically, beam coupling losses are estimated from curves such as those by Stein
or from crude estimates obtained by considering only two beams and extrapolating to a
higher number of beams. These techniques are effective for a few beams, but accuracy
rapidly drops as the number of beams mcreases Once an antenna development model is
available, beam coupling losses can be measured, but this technique is costly and time
consuming.

Stein has formulated the loss calculation in terms of a cross correlation integral and
antenna scattering parameters. His formulation has reduced the problem to solving a
matrix eigenvalue equation. Flexible software computing packages such as MATLAB™
or MATHEMATICA" can be used to solve the equations for a wide range of geometry
and excitation with a single algorithm.

The goal of this thesis is to compute the beam coupling losses in a multiple beam
linear array as a function of the number of array elements, the element spacing, the beam
crossover level, and the sidelobe level. For computational convenience it is assumed that

the excitation coefficients for all beams are the same (the case of identical beams).




D. CHAPTER OVERVIEW

A bfeakdown of contents by chapter is provided here.

Chapter II lays the requisite mathematical foundation in antenna theory and gives
a derivation of the fundamental relationships in array design.

Chapter III gives the mathematical foundation of the theory of beam coupling losses
using a scattering matrix representation. The adaptation of Stein’s work to linear arrays
is also presented.

Chapter IV presents the summary of the calculated data for the two and four beam
cases, and looks at the relationship between beam coupling losses for a given geometry
and the number of beams.

Chapter V summarizes the work performed and gives the conclusions.

Analytical details, raw data, and computer source codes are included in the

appendices.




IO. ARRAY FUNDAMENTALS

One definition of an array is "... an assembly of radiating elements in an electrical
and geometrical configuration.”[Ref. 1:p. 204] Arrays produce radiation patterns using
the principles of constructive and destructive interference. Destructive interference is
used to suppress radiation in unwanted directions. The interference patterns are a function
of the weighting of the individual elements. The weighting can in general be complex,
and determines the beamwidth, sidelobe level, and scan direction
[Ref. 4:p. 1]. The design parameters that influence the characteristics of

the radiation pattern are:

1. geometrical configuration,
2. relative element separation,
3. element amplitude weight,
4. element phase weight,

5. radiating element pattern [Ref. 1:pp.204-205].

Maxwell’s equations are used to derive the expression for the radiation pattern.

Two assumptions that apply to antenna problems are

1. All quantities have a time-harmonic dependence. Phasor notation will be used
with the e suppressed.

2. Antenna surfaces are perfect electrical conductors (i.e., only J, ).




The electric field at a field point P(x,y,z) due to the current J,(x’,y’,z’) can be expressed

as [Ref. 1:pp.86-91]

E(xyz) = -jod - W(V - A), 4}

O RByE,

where

- - -jkr
Axy2) = % [f J,(x’,y’,z')-er— ds’ @
s
r=e-x¥ + -y¥ + -2

S denotes all of the antenna surfaces; for an array it becomes a collection of identical
discrete surfaces. Combining (1) and (2) and simplifying leads to the expression for the

electric field

E’(x,y.z)=

{ff.l( ,)’,z’\e ds + leov V‘{ff,(x’,y’,z')%mdgl]}. 3)

In the far field R+, and the second term in (3) can be neglected since it will involve
terms decreasing as 1/R? and 1/R®. Using the geometry of Figure 2, and making the far-
field approximation that R and r are parallel gives |r| = |R| - R’ - R. The electric field

at P becomes

Exyz) = ”° e /iR f j V.- AR SER g @

where R is a unit vector in the direction of point P.
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Figure 2. E Field Calculation Geometry (Far-Field)
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Now that the expression for the electric field has been derived, it is necessary to
extend this result to multiple elements. Consider an array consisting of N identical
surfaces, and define a reference element with surface S, as shown in Figure 3. The
expression for the electric field of the array can be written as

By - 1 "o -Jkkz f [ [J -7, R)R]ejk[z'*“z*]dr’ , )

i=]

where c; is a complex constant that relates the current on the i® element (T.) to the
current on the reference element (7,). By factoring the complex exponential term in the

integral, (5) can be rewritten as

N
Exy2)=Y a¢’ "J‘*]

i=1

1:;0 -lnf f [J (Jso R)R]ejm ©)

= (AF) - (EF)
From (6), it can be seen that the total radiation pattern for the array is the product of the

glement radiation pattern (EF) and the array factor (AF, the term involving the
summation). This is known as the principle of Pattern Multiplication.

For radar applications, the antenna gain, beamwidth, and sidelobe level are all
important design parameters. High gain increases radar range and a narrow beam
improves target resolution. However, low sidelobe levels have currently become a
priority for clutter reduction and electronic counter counter-measures (ECCM).
Unfortunately, low sidelobes are achieved at the expense of both gain and beamwidth.

Thus, there is a relationship between beamwidth, sidelobe level, and gain that forms a

11
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Figure 3. Array Element Geometry
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classic engineering tradeoff. The sidelobe level is set by the proper choice of the
magnitude of the constants, c;. Table 1 gives a comparison between the beamwidth and
sidelobe level of several commonly used amplitude windows.

TABLE 1. BEAMWIDTH - SIDELOBE COMPARISON

Window (|¢;| =;)_— Sidelobe Level (dB) HPBW (WL) TI

Uniform -13.2 .886 "
Cosine -23.0 1.188
Taylor (20 dB n=4) -20.0 1.130
Hamming 49;.0 1.302

The Taylor weighting is used extensively in radar applications, and is specified by two
parameters: sidelobe level (SLL) and n. Fora given sidelobe level, it offers minimum
beamwidth. Once either gain or SLL is specified, the other quantity is established. [Ref.
1:p.680]

Thus far only the effects of amplitude weighting the array elements have been
discussed. However, as stated previously, the element weighting can be complex. The
effects of phase weighting will now be addressed. Let the N isotropic radiators lie along
the z-axis with element spacing d as shown in Figure 4. According to (6), the array
factor is the linear superposition of the contributions of each individual element. In terms

of the quantities in Figure 4, the array factor is

13
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Phase Reference | -

Figure 4. N-Element Array Far-Field Geometry
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N jkdoosd + p)(n - Nt1y
AF(0.9) = Y a e 2 ™

n=]
Implicit in equation (7) is the representation of the complex weights as

c, = a et t.)
where a, is the amplitude weight and 8 is a progressive phase shift between array

elements. If a,=1, the array is a uniform array, and the sum becomes a geometric series

that can be reduced to the closed form

of 20)
AF() = i , ©)
t3)

where Yy =kd cos 8+8. If =0, the direction of maximum radiation is perpendicular to
the axis of the array .elements, and the beam is referred to as a broadside beam. The
pattern for a 10 element uniform array with d= A/2 is shown in Figure 5. If 8=kd, the
direction of maximum radiation is in the direction of the array axis, and the beam is
referred to as an endfire beam [Ref. 1:p. 218].

The advent of ferrite materials and high speed switching circuits have made
scanning radar arrays possible. By applying a progressive phase shift to equation 1, the
far field radiation pattern is shifted by an amount determined by the linear phase
variation across the array. The beam peak location 6, for the amount of phase shift 8 is

determined from

15
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Figure 5. 10 Element Array Factor - Broadside Scan
(15°/sector)

16




B = -kdcosf, . (10)

Inserting this result into (7) and simplifying leads to

N
AF(©)=Y |c |00 -0t an

n=1

where 6, is the desired scan angle. Broadside and endfire correspond to 6,=90 and 6,=0
or 180 degrees, respectively. For radiation in a particular direction between 0 and 90
degrees, the appropriate phase 8 must be selected according to equation (10). The array
. can then be made to scan in any desired direction, hence the term "phased array”. [Ref.
1:p.220]

An example of a radiation pattern for a 10 element uniform array scanned to 45
degrees is shown in Figure 6. For most radar applications, the scan is predominantly +
60° from broadside. Furthermore, only radiation into one hemisphere is desired. To
achieve this, the linear array is placed above a ground plane. If the ground plane spacing
is properly chosen, the net effect is to leave the pattern above the ground plane
essentially unchanged and eliminate the radiation in the back hemisphere. Linear arrays
above a ground plane can be modelled as a planar array radiating in free space by the
method of images.[Ref.1sz 137] The pattern for a 10 element uniform array over a
ground plane scanned to 45 degrees is shown in Figure 7. The gain will increase by a
factor of approximately 2 if the power into the antenna is kept the same, since all of the

power is confined to a single hemisphere. Current systems that employ phased array
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Figure 6. 10 Element Array Factor - 45 Degree Scan
(No Ground Plane)
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Pigure 7. 10 Element Array Over Ground Plane - 45° Scan
(15°/Sector)
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technology include the AEGIS AN/SPY-1 series of Naval Radars, the PATRIOT Air
Defense Weapons System, and the PAVE PAWS Early Warning Radar System.

The final array design parameter of interest is the interelement spacing, d. When
scanning an array, multiple directions of maximum radiation within the visible region
(0<0<180 degrees) may arise. These additional maxima are not desirable and are
referred to as grating lobes [Ref. 5:p. 114]. The choice of d influences
the number and location of these grating lobes. The grating lobes appear when ¢ is an

even multiple of 2x. Accordingly, the locations of the grating lobes are given by

ma
coseg =cos9°+—d (12)
m=zx1,2,

To ensure that no grating lobes appear in the visible region requires that cos §, > 1, and

thus the limitation on spacing becomes

A
_ . (13)
1+ |cosB, |

When 6, = 0, cos 8§, =1 and when 4, = =, Icos 00| = 1. Therefore if d < N2, no

grating lobes will appear for any scan angle 6, [Ref. 6:p.144].

20




M. MATHEMATICAL FORMULATION OF BEAM COUPLING

A. INTRODUCTION

An antenna can be modelled as a multiport junction with scattering parameters S;.
The S; are computed from a knowledge of the beam radiation patterns. Once the beam
radiation patterns and the S; are known, the radiation efficiency can be determined by
solving a matrix eigenvalue equation. This solution technique will be specialized to the
case of a phased array antenna system. The model is based on the work of Stein [Ref.

2], and his notation will be used.

B. SCATTERING MATRIX FOR N-PORT NETWORKS

For electrical networks at low frequencies (f < 20 khz), the standard lumped
parameter circuit models work well in describing the behavior of the circuit. The circuit
can be described by voltages across and currents through each element. The voltages and
currents are related by the element impedances and admittances. However, relationships
for low frequencies are not valid for microwave frequencies, since the phase of the
electromagnetic wave may change significantly over the length of the
element.[Ref. 7:p.1] The lack of the standard circuit models at microwave
frequencies makes measurement of voltage and current extremely difficult. For this
reason, at microwave frequencies it makes more sense to work with the incident and

reflected fields in a network. The use of incident and reflected (or scattered) fields leads

21




to an equivalent network formulation, called the scattering matrix representation.[Ref.
7:p.221) Scattering matrices mathematically describe the behavior of waves at each port

of a device. For an N-port network,

» Su S~ Sl x

M| |Sa Sn - Sw||x (14)

orl S S S [Fa

where y denotes an outgoing wave and x an incoming wave. The elements S; are called

" the scattering parameters of the device. In matrix form
y=8x . as)

The S; are found by driving port j with an incident wave, and measuring the outgoing
wave at port i, with all other ports terminated in matched loads.

It is possible to visualize a multiple beam antenna as an N-port network consisting
of N input feeds and N output beams. If the network is reciprocal (as is usually the case
for most antennas that transmit and receive), the scattering matrix will be symmetric.
[Ref. 7:p.224] The scattering matrix can be related to other matrix formulations, such
as the impedance or admittance matrix. As with the latter two, the scattering matrix
provides a complete representation of antenna performance[Ref. 7:p.223]. Figure 8 gives
a conceptual picture of a multiple beam antenna system represented as an N-Port

network.
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Figure 8. N-Port Network (after Stein)
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C. BEAM COUPLING FACTORS

Using the notation in Stein’s paper [Ref. 2], and treating the antenna assembly as
an N-port network, the incident fields at each port are represented by the vector x, and
the reflected fields at each port are represented by the vector y. The x; and the y, are
related via the scattering matrix

N
N = E Sem¥m - a6

m=]

The incident waves give rise to far-field beam patterns and the far-field radiation patterns
are normalized using an autocorrelation integral over the spatial angular domain as

follows

[ [7 R ©0.6)R0,4)sin0d0dp = 2n, |, an

0

where R,(0,¢) is the beam 'pattem of the k® beam ,5, is the impedance of free space

(120~ ), and the * denotes complex conjugate. The electric fields are of the form

- jkr
E(0,0) = q.R.(e,d»)i’r— . as)

The term g, is equivalent to the square root of the radiation efficiency and r is the

distance from the local antenna coordinate system origin to the observation point.
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The beam coupling coefficients are given by

l 2% % = 4 o
By = Zuc o [[R:©0.0)R(0.4)sin0d0dd . a9)

The coupling coefficients possess symmetry in k and j (8;,=8,;) and are a measure of
the beam overlap. Since the R,(0,¢) are vectors with complex components (i.e, each
having a magnitude and phase), it is not just the area common to the polar diagrams of
the multiple beams. The complete overlap of beams k and j implies 8,;=1; if 8,;=0, the
beams are orthogonal. For uniform illumination, orthogonality occurs when beams cross
at approximately the 4 dB points.

Having established a measure of coupling, it is natural to investigate the
implications of conservation of energy. If the antenna system is treated as a linear
network, superposition can be used to compute the total radiated electric field.

N . i
E@®,9)= [E xkqtkk(ﬁ,(b)] & . (20)

k=1 r

Using equation (16), the incident total power P, is

P =) xx
inc ; k , (21)

=xtx

where the ! indicates a conjugate transpose. Similarly the reflected power is

P, = x'S'Sx . 22)

The total radiated power, P, is defined as
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P = -;- [ [P no £°0,6)-E(0.4)sin00dd . 23)

Appropriate substitution and simplification leads to an alternative expression for P,,,,

N N
Pmd = E X2 4x pyqjxj
k=1 j=1 4
N N
=3 Y xTx .
k=1 j=l
Conservation of energy now requires that
P, 2 Prd +P_, , : (25)

where equality holds only if the network is purely lossless.

D. SPECIALIZATION TO AN ARRAY

1. COUPLING COEFFICIENTS
The adaptation of Stein’s theory to linear arrays as presented here follows
original work documented in reference [8] [Ref. 8:p. 1]. The first step is
to determine the normalization constant for the k® beam in the array. The array element
spacing is d, and the amplitude distribution is given by the coefficients {a,}. The

magnitude of the normalization constant for th- p® beam is defined as

14, = li"ﬁ
No™

If m=n, I ,=2kd; otherwise,

N N -1
> a,] ef““%‘"-"" T a6)

m A RmR
m=1 n=1
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I = 2k {500~ "')’“"} . en
(n -m)kd

The beam coupling coefficients are computed using (19). Using the notation
in Chapter 2, the array factor is substituted for the beam pattern, R,. Neglecting the
element factor will not have a significant effect if the radiating elements are well matched

over the range of beam scan angles. Thus,

m=1

f f P % E ae o N~ H,)H eIQ(n)(U-U,)}I (28)

~ with Q(m)={2m-(N+1)}/2. The a, and a, are the amplitude coefficients for the beams,
the u, and u, are k times the phase shifts to scan the p* and q* beams, and u is the z
direction cosine times k. Performing the integration and simplifying leads to the final

expression for the coupling coefficient

N#l (u - ’)

w T OURY a0l

B, = mel n-l _ .9

2. RADIATION EFFICIENCY AND COUPLING LOSS
The calculation of the beam coupling loss is based on conservation of energy.
Stein has shown that the problem can be cast into the form of a matrix eigenvalue
equation. From the results of section (C(1)), the conservation of energy equation can be

written as
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xTx > x'STSx + x'Tx . 30)
Both of the matrices, ' and S'S, are Hermitian and positive semidefinite. Thus, from
linear algebra, each has N positive real or zero eigenvalues. Each matrix also has a full
set of linearly independent eigenvectors. It is possible to construct a matrix, U, from the
normalized eigenvectors described above that will diagonalize I" and S'S. If U is used to
diagonalize I, the transformation is a similarity transformation and has the mathematical

form of
ulru =y , 31
where y is a diagonal matrix. U is also a unitary matrix, since it has the mathematical

property

vty G2)

where I is the identity matrix.
Returning to the energy conservation equation, (30) can be transformed using
the matrix U. Let x=Uz; substitution of this result into equation (30) gives
ztz > 1 UTSTSUz + 2t UTUZ . 33

The transformation from x to z is equivalent to exciting the antenna with a new set of

voltages. Since x was arbitrary to start with, the new vector z represents an equally
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arbitrary set of voltages. Rewriting (33) gives

I -y)z 2 HUISTSU)z (34)
in which U'S'SU is also Hermitian and positive semidefinite.

The characteristic equation of (34) is
F-v=0. ©G39)

Most standard mathematical software packages contain routines that can efficiently solve

this eigensystem. The result is N eigenvalues (A;,A;,-,Ay ) that are related to the beam

efficiencies ( Iqllz’ |q2|2: ) |qN|2 ) by
1
Y= ffBe - o (36)
k .
Because ;=1 by choice of normalization,

1
p‘r:.k_k . (37)

Since |q|> < 1 from conservation of energy arguments, the upper bound on the

radiation efficiency is given by

iy = —— . (38)

For the special case of identical beams, |q, | =|q,| == |qx|, the determinant

for the radiation efficiency factor becomes
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(1-2) Bn Buv
B @A) - By 39)

pm pm (1'1)

Using the symmetry of the coupling coefficients, allows the equation to be written as

(1-2) Bz ~ B

321 (1-3) - B;vz =0 . (40)

By By - (1-2)
The evaluation of the determinant analytically proceeds by cofactor expansion. Expanding

and collecting terms leads to the final result of

AN+ A AN LA AN v Ay A HAL =0 41)
The largest root of this equation, A_,,, is then substituted into (38) to obtain |qy,,|2. The
detailed solution for four beams is given in Appendix B. The results from Appendix B
were used to verify the computer code which is based on the more general eigenvalue
solution of equations (35) through (38). Note that identical beams can only be achieved
where there is perfect symmetry, such as a circular array or a spherical array. However,
the beams away from the edges of a large cluster of beams can be considered

"approximately" identical.
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IV. DATA SUMMARY

A. INTRODUCTION
The beam coupling loss data was computed for various amplitude weights applied

to the array to control beamwidth (hence crossover level) and sidelobes. The amplitude
weights used were

1. Uniform

2. Cosine on a 10 dB pedestal

3. Cosine on a 15 dB pedestal

4. Taylor 20dB, n = 4)

5. Taylor (30dB, n = 5)

6. Taylor (40 dB, n = 6)
These distributions were chosen because of their practical use in radar and
communication systems, and because of their ease of computer implementation.
MATLAB has a built- in routine to calculate uniform weights, the Cosine and Taylor
distributions were generated using author-created functions. Figure 9 shows samples of

the various amplitude windows.
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B. 2 BEAM DATA

This section presents the summary of data for the 2-beam array scenarios. The
complete raw data is presented in a set of tables located in Appendix A.

The data summary consists of parametric plots of the coupling loss. With two
simultaneous beams, the coupling loss is related to the crossover level through the

coupling coefficient (8) between the beams

g = —> , 42)

A plot of coupling loss vs crossover level for the 20 element array is shown in Figure
10. The plot contains the data for all six amplitude weightings. Figure 11 shows a similar

plot for a 100 element array.

C. 4 BEAM DATA

Following is a summary of data for the 4 beam array scenarios. The complete data
set is presented in tables located in Appendix A. As in the 2 beam case, the data
summary consists of plots of the coupling loss. With four simultaneous beams, the

coupling loss is related to the crossover level by

q9° =—, : (43)

where A, is the largest eigenvalue of the 8 matrix. Plots of radiation efficiency vs

crossover level for the 4 beam, 20 element array are shown in Figure 12. The plots
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Figure 10. 2 Beam Coupling Loss - 20 Element Array
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contain the data for all six amplitude weightings, and the corresponding plot for a 100

element afray is shown in Figure 13.

D. MULTIPLE BEAMS AND GAIN LOSS
One important result of multiple beam antenna research is the investigation of gain

loss due to beam coupling. According to Hansen, the gain for a linear array is

[Ref. 9:p. 20].
N 2
=)
G = a=l : (44)

N N

Y ¥ a,a, sinc(n-mkd

n=] m=l

If the interelement spacing, d, is A/2, equation (44) reduces to

G - Za.z)’ , 45
X,
which can also be expressed as
G =Nq, , (46)

where 7, is the aperture efficiency (i.e., gain loss due to non-uniform amplitude weights).
This is the gain of an isolated lossless antenna with excitation coefficients {a,}. (In
standard antenna terminology, equation (46) gives the directivity.) In practice, other
losses will further reduce the antenna efficiency. The losses include transmission line

losses, mismatches in the feed, and the coupling losses if multiple beams are formed.
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Figure 13. 4 Beam Coupling Loss - 100 Element Array
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The overall antenna gain is determined by the product of the individual efficiencies. When

only tapering and beam coupling losses are considered for beam k

Gk = Nfl., |qk |2 . 47

As an example, the aperture efficiency of a single beam array with a 30 dB Taylor
distribution is .8733. When a second beam is added with a 3 dB crossover level, there

is an additional .7258 reduction in gain. For N=20,

G = (20) (.8733) (.7258) = 12.67 (48)

11 dB

Thus the beam coupling loss is 1.39 dB. It is clear that any design incorporating multiple.
beam techniques must account for the coupling losses to assure proper antenna operation

from a systems perspective.

E. BEAM COUPLING LOSSES VS. NUMBER OF BEAMS

In the preceding sections, we have examined the effect of various antenna design
parameters such as sidelobe level and beamwidth on beam coupling losses. At this
juncture it is important to also investigate the effect of fixing design parameters and
determining the relationship between beam coupling losses and the number of beams. For

this investigation, only three scenarios will be investigated

1. Uniform Weighting
2. Cosine on a 10 dB Pedestal Weighting

3. Taylor 25 dB, n = 6 Weighting
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For each one of the amplitude weights listed, the beam coupling losses for each crossover
level were compared for the center beams. Figure 14 shows a graph of the coupling loss
versus the number of beams for a 25 dB Taylor distribution with a crossover level of 3
dB. The difference in coupling loss between the 2 beam case and the 6 beam case is less
than 0.9 dB. The results indicate that the addition of a beam has little or no effect if its
scan direction is greater than several beamwidths from the center beam. When this
condition is true, the new entries in the 8 matrix due to the added beam are small, and

the eigenvalues are primarily determined by the elements near the diagonal.




Coupling Loss (dB)

1.5-

Crossover level =3 dB
Aperture Distribution = 25 dB Taylor

i T !

T 1

8 10

Number of Beams

Figure 14. Coupling Loss vs Number of Beams
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V. CONCLUSIONS

Analysis of the data presented in this report supports several conclusions. These

conclusions are

1. For arrays, the pertinent loss equations are readily implemented and solved using
commercial software packages. Availability of these packages makes it possible
for personnel involved with array antennas (especially junior officers) to more
completely understand why the equipment behaves as it does. A more detailed
understanding of equipment performance translates to increased mission readiness
and improved program management.

2. Beam coupling losses are dependent upon the basic array antenna design
parameters and therefore must be traded off with beamwidth, sidelobe level, and
gain requirements.

3. The reduction in array gain observed when using multiple beam techniques varies
as a function of amplitude taper and crossover level, and is related to radiation
efficiency. The reduction is not overwhelming, in most cases, neither is it
insignificant.

4. The curves of the coupling loss vs crossover were distinctly different for low
sidelobe and uniform arrays.

5. Future research should examine planar arrays and include the effect of the
radiating clement factor. The option of integrating the radiation patterns
numerically (rather than summing the aperture coefficients) should also be
considered.

Array antennas are in use throughout the radio frequency portion of the spectrum,
and recent printed circuit arrays operate at frequencies as high as 800 Gigahertz (GHz)

[Ref. 10]. Phased array technology will continue to grow in use due to its

42




advantages in sidelobe suppression, scanning speed, and compactness. It is necessary to
understand the benefits and limitations of this technology if it is to be exploited to its full

potential.
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APPENDIX A - CALCULATED DATA

A. 2 BEAM DATA

TABLE 2. 2 BEAM UNIFORM - 20 ELEMENTS

Crossover Level (dB) A¢ ] q q’ (dB)
0 0.0000 1.0000 0.5000 3.0103
1 4.7200 0.6064 0.6225 2.0585 "
2 6.6000 0.3251 0.7547 1.2225
3 8.0000 0.1263 0.8879 0.5165
4 9.1300 0.0099 0.9902 0.0428
h] 10.1000 0.1022 0.9073 0.4226
6 - 10.9400 0.1612 0.8612 0.6491
7 11.6500 0.1950 0.8368 0.7737
8 12.3200 0.2131 0.8243 0.8390




TABLE 3. 2 BEAM UNIFORM - 100 ELEMENTS

| Crossover Level (dB) A¢ 8 'y B q (dB)
0 0 1.0000 0.5000 3.0103
1 0.9540 0.5979 0.6258 2.0356
2 1.3321 0.3136 0.7613 1.1846
3 1.6022 0.1212 ©0.8919 0.4967
4 1.8183 0.0099 0.9902 0.0428
5 2.0164 0.1046 0.9053 0.4322
6 2.1785 0.1613 0.8611 0.6493
7 2.3226 0.1950 0.8368 0.7738
8 2.4487 0.2118 0.8252 0.8345
9 2.5568 0.2172 0.8216 0.8536
10 2.6650 0.2147 0.8232 0.8448
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TABLE 4. 2 BEAM COSINE (10 dB PEDESTAL) - 20 ELEMENTS

Crossover Level (dB) Aé 8 ¢ ¢ (dB) ll
0 0 1.0000 0.5000 3.0103
1 5.5700 0.7050 0.5865 23172
2 7.8200 0.4889 0.6716 1.7287
3 9.5200 0.3307 0.7515 1.2408 |
4 10.8800 0.2182 0.8209 085712 |
| 5 12.0800 0.1367 0.8797 0.5565
6 13.1300 0.0792 0.9266 0.3310 ll
7 14.0500 0.0399 0.9616 0.1699 H
L
“ 8 14.8900 0.0133 0.9869 0.0574 u
II 9 15.6600 0.0043 0.9957 0.0186
16.3500 0.0152 0.9850 0.0655

l|=10
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TABLE S. 2 BEAM COSINE (10 dB PEDESTAL) - 100 ELEMENTS

" Crossover Level (dB)

47

a6
0 0
| 1 1.0981 0.6967 0.5894 2.2960
2 1.5482 0.4709 0.6799 1.6757
3 1.8723 0.3134 0.7614 1.1840
4 2.1425 0.1987 0.8342 0.7872
5 2.3587 0.1225 0.8909 0.5017
6 2.5568 0.0663 0.9378 0.2789
7 2.7370 0.0271 0.9736 0.1160
8 2.8992 0.0011 0.9989 0.0046 I
9 3.0434 0.0151 0.9851 0.0652 I
10 3.1696 0.0244 0.9761 0.1049




TABLE 6. 2 BEAM COSINE (15 dB PEDESTAL) - 20 ELEMENTS

Crossover Level (dB) A¢ 8 q =-=q:=(ﬁ
0 0 1.0000 0.5000 3.0103 I
1 5.9300 0.7216 0.5809 2.3593
| 2 8.3500 0.5136 0.6607 1.8001
3 10.1500 0.3603 0.7351 13363
4 11.6400 0.2477 0.8015 0.9611
5 12.9300 0.1648 0.8585 0.6625
6 14.0500 0.1052
it
7 15.0600 0.0628
8 15.9900 0.0320
II 9 16.8200 0.0113
17.5900 0.0030
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TABLE 7. 2 BEAM COSINE (15 dB PEDESTAL) - 100 ELEMENTS

Crossover Level (dB) A¢ B q q’ (dB) ﬂ
0 0 1.0000 0.5000 3.0103
1 1.0981 0.7092 0.5851 2.3279
2 1.5482 0.5050 0.6645 1.7754 ||
3 1.8723 0.3446 0.7437 1.2858 »
4 2.1425 0.2374 0.8082 0.9249
5 2.3587 0.1525 0.8677 0.6165
6 2.5568 0.0934 0.9146 0.3877
7 2.7370 0.0541 0.9487 0.2287
8 2.8992 0.0237 0.9769 0.1015
“ 9 3.0434 0.0034 0.9966 0.0148
10 3.1696 0.0080 0.9920 0.0348
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TABLE 8. 2 BEAM TAYLOR 20 dB n = 4 - 20 ELEMENTS

Crossover Level (dB)
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TABLE 9. 2 BEAM TAYLOR 20 dB n = 4 - 100 ELEMENTS

Crossover Level (dB) A 8 ¢ ¢ (B) I
0 0 1.0000 0.5000 3.0103

“ 1 1.0441 0.6758 0.5967 2.2423

" 2 1.4582 0.4493 0.6900 1.6117 |

“ 3 17643 0.2923 0.7738 1.1136

|r 4 2.0164 0.1835 0.8450 0.7316

|| 5 2.2326 0.1101 0.9008 0.4536
6 2.4307 0.0605 0.9429 0.2552
7 2.5929 0.0325 0.9685 0.1390
8 2.7370 0.0165 0.9838 0.0711
9 2.8812 0.0080 0.9921 0.0344
10 3.0074 0.0057 0.9943 0.0249
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TABLE 10. 2 BEAM TAYLOR 30 dB n = § - 20 ELEMENTS

Crassover Level (dB) aé 8 ¢ ¢ (dB)

“ 0 0 1.0000 0.5000 3.0103 I
1 5.8200 0.7268 0.5791 2.3724 I '
2 8.1800 0.5254 0.6556 1.8338
3 9.9500 0.3777 0.7258 1.3915 |
4 11.4200 0.2689 0.7881 1.0343
5 12.6900 0.1891 0.8410 0.7522
6 13.7900 0.1319 0.8835 0.5381
7 14.8000 0.0902 0.9173 0.3751
8 15.7100 0.0602 0.9432 0.2539
9 16.5400 0.0391 0.9624 0.1666
10 17.3100 0.0239 0.9767 0.1026
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TABLE 11. 2 BEAM TAYLOR 30 dB n = 5 - 100 ELEMENTS

Crossover Level (dB) Ag 8 q q* (dB) II
0 0 1.0000 0.5000 3.0103 "
" 1 1.0441 0.7329 0.5771 2.3879 Il
|| 2 1.4582 0.5415 0.6487 1.8794
3 1.7643 0.3969 0.7158 1.4518
4 2.0164 0.2937 0.7300 1.1182
“ 5 2.2326 0.2114 0.8255 0.8330
6 2.4307 0.1571 0.8642 0.6338
7 2.5929 0.1164 0.8957 0.4782
8 2.7370 0.0866 0.9203 0.3607
9 2.8812 0.0651 0.9388 0.2740
10 3.0074 0.0482 0.9540 0.2044
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TABLE 12. 2 BEAM TAYLOR 40 dB n = 6 - 20 ELEMENTS

Crossover Level (dB) A¢ 8 q q* (dB) 1
0 0 1.0000 0.5000 3.0103
“ 1 6.3500 0.7463 0.5726 2.4212 “
Il 2 8.9300 0.5557 0.6428 1.9193 ll
“ 3 10.9000 0.4103 0.7091 1.4931 WI
" 4 12.5200 0.3024 0.7678 1.1474
Il 5 13.9200 0.2212 0.8189 0.867 |
Ir 6 15.1700 0.1604 0.8618 0.6461
7 16.3100 0.1143 0.8974 0.4700 H
8 17.3500 0.0802 0.9258 0.3350
9 18.2900 0.0549 0.9480 0.2321
0.0362 0.9651 0.1544

" 10 19.1700
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TABLE 13. 2 BEAM TAYLOR 40 dB n = 6 - 100 ELEMENTS

Crossover Level (dB) A¢ -] *—q’—_ﬁ
0 0 1.0000 0.5000 3.0103 II
1 1.0441 0.7526 0.5706 2.4369 ﬂ
2 1.4582 0.5701 0.6369 1.9504 “
3 1.7643 0.4312 ©0.6987 1.5570
4 2.0164 0.3217 0.7566 1.2112
B 5 2.2326 0.2459 0.8026 0.9549
6 2.4307 0.1853 0.8437 0.7383
7 2.5929 0.1381 0.8786 0.5619
8 2.7370 0.1022 0.9073 0.4227
9 2.8812 0.0776 0.9280 0.3245
10 3.0074 0.0574 0.9458 0.2422
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B. 4 BEAM DATA

TABLE 14. 4 BEAM UNIFORM - 20 ELEMENTS

—_———
Crossover (dB) [ Agy’ [ 9 Ad,s Bis Ag,, | @B | ¢
" 0 100 o 1.00 0 100 o 6.02 [0.25
“ 1 061 | 948| 005 | 1922| 020 29059 | 2.7 |o.53
" 2 033 | 1329 022 2738 o009 | 4362 137 |0.73
lL 3 013 | 1616 | 012 | 338 | o.11| 5662 | o0.51 |0.89
lr 4 001 ] 1850 | o001 | 3939 | ©001| 7216 | 013 [0.97
" 5 010| 2052| o010 4452 | 009 | 9185 113 j0.77
6 016 2230 | 013 | 4938 | 0.09 | 9481 1.49 [0.71 l
7 019| 238 | o012 5390 | 004 9719 161
“ 8 021 | 2525| o009| s8s7| o002 | 9929 158
9 022 | 2.53| o005| 6331| 00610108 143
10 02| 2167 o002 69.23| o008 | 10260 131 ]
SN NN I I N E—
"'Bi2 = Bay = Bas
z Ady; = Adyy = Adyy
> Bis = Bra
YAy = Adyy
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TABLE 15. 4 BEAM UNIFORM - 100 ELEMENTS

z Ad; = Ady; = Adyy

> Bis = B

Y Ad, = Ady;

57

Crossover (dB) =ﬂm‘ A0, | B | A0t | B | Ady q2(d? T |
0 1.000 0 1.000| O 1.000f O 6.02 1 0.250
1 0.598 1.908 | -0.056 3.819f -0.192 5.734 2.72 1 0.534
2 0.314 2.665| -0.215 5.336 0.092 8.018 1.31 ] 0.740
3 0.121 3.206 | 0.114| 6.421 0.103 9.658 0.51 ] 0.890
4 -0.010 3.638 0.010 7.2921 0.010] 10.975 0.13 ] 0.971
5 -0.105 4.035 0.097 8.091( -0.086| 12.188 1.13] 0.771
6 -0.161 4360 | 0.128 8.746 | -0.081| 13.184 1.50 | 0.708
7 0.195 4.649| 0.120 9.329 | -0.033| 14.073 1.58 | 0.695
8 -0.212 4902| 0.09 9.840| 0.020| 14.854 1.52 | 0.704
9 0.217 5.119| 0.054| 10.279| 0.055| 15.525 1.41 ] 0.722
i
10 -0.215 5.336 0.014} 10.718| 0.071] 16.199 1.27 | 0.746
" B2 = Br3 = Bas




TABLE 16. 4 BEAM COSINE (10 dB PEDESTAL) - 20 ELEMENTS

Crossover (dB) [ B.,' | 44, | B’ | 4di* | Bua A¢,, |F'W@B)| ¢
0 1.00 0 1.00 0 1.00 0 6.00] 0.25
1 0.70 11.20 0.20 22.85 -0.02 35.62| 3.67| 043
2 0.49| 15.79] -0.01| 3296 0.01]| 5470} 2.52] 0.56
3 0.33 19.30 -0.02 41.38 0.01 82.52| 1.80| 0.66
4 0.22| 22.19] -0.00] 49.05| -0.01| 9462 131]| 0.74
5 0.14] 24.74 0.01] 56.82| ©0.01| 98.54| 092} 0.81
6 0.08 27.02 0.01 65.31 0.00] 101.74| 0.56| 0.88
7 0.04 29.06 0.01 76.26 0.01] 10439} 0.32| 0.93 “
8 0.01 30.93 0.00 91.01 0.01| 106.66| 0.09| 0.98 I
9 0.00| 3266| -0.01| 92.82| -0.00| 108.64| 0.04] 0.99
10 0.02 34.26 0.01 94.39 001} 11037} 0.09] 098
Notes:
"B12 = Bys = Baas

Ap; =0dy; = Adyy

3’6 13 = 324

4'A‘isl-:a =40,
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TABLE 17. 4 BEAM COSINE (10 dB PEDESTAL) - 100 ELEMENTS

Crossover (dB)| 8, A¢, ;) .5’ Ad,' | Bia 4¢,, |d'@dB)| ¢
0 1.000 (] 1.000 0 1.000 0 6.02 |0.250
1 0.697 2.197 0.178 4.396| -0.030 6.603| 3.58 |0.438
2 0.471 3.098 -0.020 6.204| 0.015 9.329| 2.42 |0.572
3 0.313 3.747 -0.025 7.510| 0.007| 11.305| 1.72 |0.673|
4 0.198 4.288 0.002 8.600( -0.013| 12.962| 1.20 |0.758
5 0.123 4.721 0.016 9.475| -0.010f 14.296| 0.83 |0.826 |
6 0.066 5.119 0.018 10.279] 0.003 15.525] 0.51 ]0.889
7 0.027 5.480 0.011 11.012| 0.011} 16.649] 0.24 |0.946
8 0.001 5.806 0.001| 11.673| 0.009| 17.667}| 0.04 |0.991
9 0.015 6.096| -0.007\ 12.261| 0.002| 18.576{ 0.08 |0.982
10 0.024 6.349{ -0.012| 12.778} -0.004| 19.375| 0.13 ﬂ

Notes: — B

L Bia = B2z = Bis

: Adyy = Adyy = Adyy

> Bis = B4

+ Ad,; = Ay,
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TABLE 18. 4 BEAM COSINE (15 dB PEDESTAL) - 20 ELEMENTS

Crossover (dB) | B..' | Ad’ | £i’ | Ao | Bus
0 1.00 0 1.00 0 1.00
1 0.72 11.93 0.23 24.42 -0.01
2 0.51 16.87 0.01 35.49 -0.00 60.56 2.68 0.54
3 0.36 20.64 0.02 44.83 0.01] - 92.05 1.94 0.64
4 0.25 23.79 -0.01 53.78 -0.00 97.13 1.43 0.72
5 0.16 26.57 0.00 63.47 0.00] 101.14 1.02 0.79
6 - 0.11 29.06 0.01 76.26 0.00]| 104.39 0.71 0.85
7 0.06 31.31 0.01 9141 0.00} 107.10 0.46 0.90
8 0.03 33.44 0.00 93.59 0.00| 109.49 0.22 0.95
9 0.01 35.36 0.00 95.43 0.00]| 111.51 0.09 0.98
10 0.00 37.19 -0.00 97.09 0.00] 113.32 0.00 1.00

"By = B3 = Bas

2 Adi; = Adyy; = Adsy

¥ Bis = Baa

4 Ad3 = Adyy




TABLE 19. 4 BEAM COSINE (15 dB PEDESTAL) - 100 ELEMENTS

Pch dB) | B! | Ad' | Bis° | 40 | B | Ad |PdB)| ¢
0 1.000 | O 1.000]| O 1.000]| O 6.02 | 0.250
1 0.709 | 2.341 | 0.205| 4.685|-0.017 | 7.038 3.68| 0.429
2 0.5(_)5 3.242 | 0.003 | 6.494| 0.002| 9.767 2.60| 0.549
3 0.345 | 3.963|-0.024] 7.945| 0.005 {11.967 1.87 } 0.650
4 0.237 | 4.505|-0.009 | 9.037 { -0.004 | 13.628 1.381 0.727
5 0.153 5.010 | 0.005 }10.060 | 0.005 |15.189 0.97| 0.800
6 0.093 | 5.444| 0.009 |10.938 | 0.003 |16.537 | 0.64] 0.862 “
7 0.054 | 5.806 | 0.007 |11.673 | 0.004 | 17.667 0.40] 0.913
8 0.024 | 6.168| 0.003 |12.409 | 0.002 |{18.804 ] 0.18 | 0.960
9 0.003 6.494 | -0.002 | 13.073 | 0.001 {19.834| 0.02] 0.996
10 0.008 | 6.748 -0004 13.591 | -0.002 {20.640] 0.04 | 0.990
Notes:

b Bz = Brs = Bss

2 Ady = Adys = Ay,

> Bis = Bra

2 Ay = Adyy
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TABLE 20. 4 BEAM TAYLOR 20 dB n = 4 - 20 ELEMENTS

Crossover (dB) Bia' A¢,;’ B’ -Aﬂa‘ 3141 A¢,, | 4'(dB)

0 1.00 0.04 1.00

1 0.68 10.43 0.15 21.22 | 0.01 | 32.88 3.47 |0.45 J
2 0.45 14.70 | -0.01 30.51 0.04 | 49.60 2.37 |0.58 II
3 0.29 17.93 0.01 38.01 | -0.01 | 67.46 1.67 {0.68

i

4 0.17 20.60 0.04 44.73 | 0.06 | 91.99 1.13 10.77

5 0.10 22.89 0.04 51.06 | 0.04 | 95.74 .76 10.84

6 0.05 24.98 0.02 57.61 0.00 | 98.89 .41 {0.91

7 0.02 26.82 | 0.00 64.46 | 0.04 |101.47 .18 |0.96

8 -0.00 28.48 | -0.03 72.51 | 0.04 |103.66 .22 10.95 ﬁ
9 -0.01 30.05 | -0.05 90.06 | 0.02 |105.61 .32 10.93
10 -0.01 31.48 | -0.06 91.59 | 0.00 |107.30 .27 |10.94

— NI S SOV S S—

Notes:

N Bi. = B2 = Bia

2 Apy; = Adyy = Ady,

. Bis = Br4

4 Adyy = Adyy
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TABLE 21. 4 BEAM TAYLOR 20 dB n = 4 - 100 ELEMENTS

Crossover (dB) | B8..' | 4¢.° | 8. | 4¢' | Bua Ag, (¢ @B)| ¢
0 1.000 | 0.036 | 1.000 | 0.072| 1.000 | 0.108 6.02| 0.25
1 0.676 | 2.089 | 0.157 | 4.180 | 0.008 | 6.27 3.47 0.4511
2 0.449 | 2917 ] 0.007| 5.842| 0.060 | 8.782 244 057
3 0.292 | 3.530| 0.029] 7.074| -0.011 | 10645 1.74| 0.67 |
4 0.184 | 4.035| 0.058 | 8.091 | -0.063 | 12.188 1.25| 0.75
5 0.110 | 4.469 | 0.058 | 8.965| -0.044 | 13.517 0.86 | 0.82
6 0.061 | 4.866 | 0.032| 9.767{ 0.005| 14.742| 0.51] 0.89
7 0.033 | 5.191 | 0.000 | 10.425 | 0.034 | 15.750 0.27 | 0.94 “
8 0.017 | 5.480| -0.028 | 11.012| 0038 | 16.650| 0.18| 0.96
9 0.008 | 5.770 | 0.051 | 11.600 | 0.022 | 17.553 0.22| 0.95
10 0.006 | 6.023 | -0.062 | 12.114 | -0.002 | 18.348 | 0.27 | 0.94
Notes: .
. Bz = Br3 = By

2 Ay = Adyy = Adyy

> Bis = Bra

YAy = Adyy
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TABLE 22. 4 BEAM TAYLOR 30 dB n = 5 - 20 ELEMENTS

— — —_—
“ Crossover (dB) | 8,.' | 44" | Bis’ | 40is' | Bua A¢, | ¢ (dB) q
0 1.00 0 1.00 0 1.00 0 6.02 0.25
1 0.73 11.71 0.25 23.95 0.02 37.51 3.87 0.41
2 0.53 16.54 0.04 34.70 0.01 58.64 2.76 0.53
I
3 0.38 20.22 -0.00 43.72 -0.01 91.32 2.08 0.62 Il
4 0.27 23.32 -0.01 52.34 0.01 96.41 1.55 0.70 “
[ 5 0.19 26.05 -0.01 61.45 0.00] 100.42 1.14 0.77
6 0.13 28.48 0.01 72.51 0.01 | 103.66 0.81 0.83
7 0.09 30.72 -0.01 90.78 0.001 106.41 0.56 0.88
8 0.06 32.79 -0.01 92.95 -0.01 | 108.79 0.36 0.92
9 0.04] 34701 001 9481 0.01}] 110.83 0.22 0.95
10 0.02 36.51 -0.01
Notes:
Biz = Bas = Bas
2 Ad), = Ady; = Adyy
: Bis = By
4 Ad; = Adyy,




TABLE 23. 4 BEAM TAYLOR 30 dB n = 5 - 100 ELEMENTS

Crossover (dB) | B,,' | 49" | B° | 4dis' | Bis | Ady |Q2(dB)| ¢
0 1.000f O 1.000{ O 1.000] O 6.02| 0.250
. 1 0.733 2.3717 0.270 4.758 0.042 7.147 3.89] 0.408
2 0.542 3.314| 0.067 6.639| -0.001 9.987 2.87§ 0.516
3 0.397 4.035 0.016 8.091] -0.010}| 12.188 2.18} 0.605
|
4 0.294 4.613 0.004 9.256 | -0.003| 13.962 1.69| 0.677
5 0.211 5.155] -0.003| 10.352] 0.007| 15.637 1.27} 0.746
6 : 0.157 5.589| -0.008}1 11.232] 0.007| 16.988] 0.97 0.800
{
7 0.116 5.987| -0.010f 12.040] 0.000| 18.234| 0.72| 0.8348
8 0.087 6.349| -0.009| 12.778) -0.006| 19.375| 0.54] 0.884
9 0.065 6.675| -0.006| 13.443] -0.007| 20.409] 0.40}] 0.911
" 10 0.0481 7.001| -0.002| 14.110| -0.004| 21.450] 0.32] 0.930
Notes:
! 512 - 32-3 - 63-4
z Adiy = Adyy = Aday
Bl 3 — 62-4
) Ay = Adyy
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TABLE 24. 4 BEAM TAYLOR 40 dB n = 6 - 20 ELEMENTS

e e e

Crossover (dB) | 8,,' | 49,.° | B’ | Ad' | Bia Adi, | ¢ (dB) q
0 1.00 V] 1.00 0 1.00 0 6.02 0.25 “
-
1 0.75 12.78 0.29 26.25 0.03 41.57 3.98 0.40 |
2 0.56 18.08 0.06 38.37 0.01 68.62 2.92 0.51]
3 0.41 22.23 -0.00 49.16 -0.01 94.69 2.22 Oill
i
4 0.30 25.69 -0.01 60.12 -0.01 99.91 1.67 0.68
5 0.22 28.77 0.01 74.28 0.00 ) 104.02 1.31 0.74
t 6 0.16 31.56 -0.01 91.68 0.00| 107.39 0.97 0.80
f
7 0.11 34.17 -0.01 94.31 -0.00| 110.28 0.71 0.85
8 0.08 36.60 -0.01 96.57 0.00| 112.75 0.51 0.89
9 0.05 38.88 0.01 98.54
10 0.04 41.04 -Q.Ol 100.28 .
=
L b Biz = B2z = Bis
2 Dby = Adyy = Adyy
¥ By = B
4 Ady; = Ady,
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TABLE 25. 4 BEAM TAYLOR 40 dB n = 6 - 100 ELEMENTS

2 Ady = Adyy = Aday

> Bis = Brs

Y Ad,; = Ay,
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Crossover :dB) Bt | A0’ | B | Ads' | By | Ad | 2WB) | ¢
] 1.000{ 0 1.000| 0 1.000| 0 6.02 | 0.250
1 0.753] 2.629| 0.306| 5263| 0.054| 7.909| 4.01]0.397
2 0.570| 3.675| 0.085| 7.364| -0.003{ 11.085 3.01 [ 0.500
3 0.431| 4.469| 0.018| 8.965| -0.002| 13.517] 2.36 | 0.584
4 0.322| 5.155| -0.000| 10.352| -0.000| 15.637 1.82 | 0.658 “
5 0.246 | 5.697| -0.003| 11.452| -0.001| 17.327 1.44 | 0.717
6 0.185| 6.204| -0.003| 12.483| -0.002} 18.918 1.13 | 0.771
7 0.138| 6.675| -0.002| 13.443| -0.002] 20.409| 0.87 | 0.819
8 0.102| 7.110| -0.001| 14.333| -0.001| 21.798| 0.66 | 0.859
9 0.078 | 7.473| -0.001| 15.077| 0.000| 22.966 | 0.51 | 0.889
10 0.057| 7.836| -0.000| 15.824| 0.001| 24.144| 0.39|0.915

L Bz = By3 = By




APPENDIX B. 4 BEAM RADIATION EFFICIENCY

This Appendix describes the radiation efficiency calculation for the case of 4
identical beams. For 4 beams, the determinant for the radiation efficiency factor becomes

(1-2) B, B By
Ba (-3) By By | @)
Byy By, (1-2) By
Ba Bn Bs (1-3)

Recalling the symmetry of the coupling coefficients, this determinant can be written as

(1-2) By By Ba
B,y (1-2) B3 Bg (50)

531 pgz (1"}') B:S
Ba B By (1-2)

The evaluation of the determinant analytically proceeds by cofactor expansion. Expanding

and collecting terms leads to the final result of

A4 =423 +(6-K)A2 +2(K-A-2)A +(24+D+1) =0 . (51

The following definitions are made to simplify the expression:




@ =P BuBa Y=ByB.Be

8 =By B3y B3y e=P;ByBa (52)
N=P3ByBnbBs =Py BB by

P =By By By Ba

K= IBlalz"lﬂazIz*Ilez*|lelz+|331|2 + “341‘2 (53)
C-= |Bz1|2lp43|2"' “342'2“331'2_,_“332|2“3u|2

A = Re[a] + Re[y] + Re[8] + Re[e]
B = Re[n] + Re[p] + Re[c] 9
D =C-2B

Since the coefficients of the fourth order polynomial obtained in (33) are real, the
Fundamental Theorem of Algebra guarantees exactly four complex roots. Additionally,
the roots of the polynomial correspond to the eigenvalues of the beam coupling matrix.
Since the matrix is Hermitian, all eigenvalues (and therefore the polynomial roots) are
guaranteed to be real. The largest root (dominant eigenvalue) is substituted into equation

(38) to obtain the maximum radiation efficiency for the system.
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APPENDIX C. COMPUTER SOURCE CODE

A. INTRODUCTION

The MATLAB™ (Matrix Laboratory) software package by The MathWorks® offers
efficient implementation of the equations describing the coupling interactions and
radiation efficiency. Since it is a programming language based on vector/matrix
manipulation, it is fairly straightforward to enter the desired array coefficients, and have
the computer calculate the solution. Additionally, many built in routines provide
flexibility without the necessity of laboring to produce FORTRAN or PASCAL code.
These features allow the programmer to concentrate primarily on the behavior and
performance of the algorithm. The matrix nature of MATLARB also allows more efficient
computation when data are presented in vector format. Acceptable throughput rates were
obtained on a 386SX personal computer with an installed math co-processor.

For this thesis, the computer coding proceeded in a modular fashion. Principal
tasks were coded as functions, with the main procedure calling the functions through
arguments. Functions written included

1. Cosine on a Pedestal amplitude weight generator.
2. Taylor amplitude weight generator.
3. Beam coupling loss generator.

4. Array Pattern function
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The source code for these functions is included in this Appendix. These functions were
the principal calculational tools utilized in computing the raw data. Sufficient
documentation is included within the function M-Files to allow straightforward analysis

of program flow.

B. MATLAB SOURCE CODE

1. COSINE ON A PEDESTAL AMPLITUDE WEIGHTS

function y =cospedwn(N,p)

% function Y=COSPEDWN(N,p)

%

%

% This function calculates amplitude weights for a cosine on a pedestal

% window. The input arguments is the number of array elements, (N) and
% the pedestal size in dB. The function returns the amplitude coefficients.
%

%

clg;

ped=10."(-p/20)

I=1:N;

d=2*Q-1)/(N-1)-1;

y=(((1-ped)*abs(cos(xI*pi/2))) + ped).’;

2. TAYLOR AMPLITUDE WEIGHTS

function a=taylor(slr,n_bar,N)

%

% function a=TAYLOR(slr,n_bar,N)

%

% This function calculates amplitude weight coefficients. for an

% n element array based on a Taylor amplitude distribution. The

% input arguments are the desired main lobe - side lobe ratio (dB),
% the sidelobe parameter n_bar, and the number of array elements,
%

% The output variable is the amplitude weights an.

% The procedure is outlined in the text * The Handbook of Antenna
% Design (vol 2)" edited by A.W. Rudge, K. Milne, A.D. Olver, and
% P. Knight.

%

clg;

p=n_bar-1;

dbamp =20/log(10);

sll=exp(abs(sir)/dbamp); % Calculate sidelobe level as a ratio
A=(1/pi)*log(sll +sqrt(sl].“2-1)); % Generate intermediate parameters
sigma=n_bar/(sqrt(A.*2 + (n_bar-1/2).2));

f=ones(p,1);

% Begin calculation of amplitude weights
for m=1:p

)




2(m) =sigma*sqrt(A.“2+(m-1/2).*2);
K(m)=(fact(p)).*2 ./ (fact(p+m) .* fact(p-m));
end

for n=1:p

P(n) =prod(1-(n.*2 ./ 2.72));
end
f=K.*P;
J=zeros(N/2,p);
for i=1:N/2

for k=1:p

J@,k)=1(:,k).*cos(k.*pi. *2*(i-1)/N);

end
end
g=1+2%*sum(.’);
% Only 1/2 of the coefficients need to be calculated due to symmetry
a=[fliplr(g) g].";
a=a/max(s); % Normalize the amplitude to max of 1

3. BEAM COUPLING LOSS CALCULATOR

function beta=couploss(N,crosslvl,win)

%

% function beta=COUPLOSS(N,crosslvl,win)

% This function calculates coupling losses for overlapping beams

% in a multiple beam antenna. The multiple beams are generated using
% a linear array with various choices for amplitude windows.

% A switch parameter is used to choose the amplitude weighting as follows
% win == Rectangular window

% win == 2 Cosine on a pedestal (Pedestal size is input)

% win == Taylor (Sidelobe level and n_bar are input)

%

clg;

% Initialize parameters

dB=crosslvl;

k=2%pi;

d=.5;

kd=k*d;

zeta=(N+1)/2;

% Get amplitude coefficients
ifwin==1
al =boxcar(N);
a2=al.’;
elseif win == 2
p=.3199;
al =cospedwn(N,p);
2=al.";
elseif win == 3
slr=20;
n_bar=4,;
al =taylor(slr,n_bar,N);
2=al.";
end
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% Get crossover squint angles
level=10 .*(-dB/20);

u=0;

xi=1;

delta_u=1/10000;
a=al(N2+1:N).’;

m=1:N/2;
Max=a*ones(10,1)+a*ones(10,1);

while xi > = level
u=u-+delta_u;
zl =a*exp(*(2*m-1)/2*kd*u).’;
2 =a*exp(j*(2*m-1)/2*kd*u).’;
xi=1/Max*(zl +22);
end
u_squint=uy;
crossover_des=level;
crossover_comp =Xi;

% Initialize scan angles and sums
up=kd*u_squint;
ug=-kd*u_squint;

du=uq-up;

dtheta = (acos(du/kd))*180/pi;

% Set up matrices and calculate summations
Al=al*a2;
I=zeros(N,N);
Z1=0,Z2=0;,23=0;
for m=1:N
for n=1:N
ifn==m
I(m,n)=2%kd;
Z1=21+Al(m,n).*I(m,n).*exp(-j*m*du);
22=72+ Al(m,n).*I(m,n).*exp(j*0);
Z3=23 + Al(m,n).*I(m,n)*exp(j*0);
else
I(m,n) =2*((sin((n-m)*kd))/((n-m)));
Z1=2Z1+ Al(m,n).*I(m,n).*exp(j*(up*m-uq*n));
Z2=22+ Al(m,n).*I(m,n).*exp(G*up*(m-n));
Z3 =273+ Al(m,n).*I(m,n).*exp(j*uq*(m-n));
end
end
end
% Calculate coupling coefficient here
ex=].%exp(j*zeta*du);
X=ex.*Zl;
Y =((Z2).*(.5) -* (Z3)."(.5);
b=X./Y;
beta=abs(b);

4. ARRAY PATTERN FUNCTION

function x=arrpat(a.psi_primel,n)

%

% X=ARRPAT(a,psi_primel,n)

%

% This function caiculates the far-field array pattern for a




% linear array. Input arguments are the amplitude weight coefficients

% the desired steering angle off broadside, and the number of elements.
% The interelement spacing is automatically assumed to be lambda/2.

%

clg;
if psi_primel <= 90 % Refer steering angle to broadside.
psil =(pi/2) - psi_primel*(pi/180);
else
psil =psi_primel*(pi/180);
end
(i, kl=size(a);
ifj >k
a=a';
end
lambda=1; % Normalize wavelength
k=2*pi/lambda;
d=lambda/2; % Iaterelement spacing
kd=k*d;
phil = -kd*cos(psil); % Generate phase shift terms to steer the
% beam.
if rem(n,2) ~= 0
z=-(n-1)/2:(n-1)/2;
else
z=linspace(-n/2,n/2,n);
end
psi=linspace(0,2*pi,256);
el =exp(j*z*phil); % Phase weighting terms
se=size(el);

% Generate amplitude and phase weighted terms

al=a(n/2+1:n);
X1=zeros(256,n/2);
for 1=1:256

forz = 1:n/2

X1Q,2)=(al(:,z).*cos(kd.*cos(psi(l)). *(2*z-1)/2 + ((2*z-1)/2 . *phil)));

end
end
ml =2*abs(sum(X1.")); % Sum the elements to get the array factor
x=ml/max(ml);
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